对基于集成学习的 Windows PE 恶意软件检测器的对抗样本有效性研究
原文中文,约400字,阅读约需1分钟。发表于: 。机器学习在网络安全领域,尤其是恶意软件检测和预防方面引起了越来越多的关注和兴趣。本研究提出了一种通过结合生成对抗网络(GANs)和强化学习(RL)来应对合集学习型检测器的变异系统,克服了现有模型的局限性。实验证明,该模型在保持可执行文件格式、可执行性和恶意性方面取得了一定的成功率。
本文研究了机器学习模型容易受到对抗攻击的漏洞,特别关注恶意的Windows Portable Executable(PE)文件。作者应用了基于梯度、基于进化算法和基于强化学习的方法来生成对抗样本,并将生成的样本与选定的杀毒软件进行测试。结果显示,采用强化学习方法的Gym-malware生成器具有最大的实际潜力,其平均生成样本时间为5.73秒,最高平均逃避率为44.11%。将Gym-malware生成器与自身相结合可提高逃避率至58.35%。