Nature公开谷歌IMO金牌模型技术细节!核心团队仅10人,一年给AI编出8000万道数学题训练

💡 原文中文,约3500字,阅读约需9分钟。
📝

内容提要

谷歌DeepMind的AlphaProof模型公开了技术细节,团队由10人组成,训练了8000万道数学题。该模型将数学证明视为游戏,利用强化学习和变体生成技术,在2024年国际数学奥林匹克中成功解决多道难题并获得金牌。尽管表现优异,但在处理新定义时仍面临挑战。

🎯

关键要点

  • 谷歌DeepMind的AlphaProof模型公开了技术细节,团队由10人组成,训练了8000万道数学题。
  • AlphaProof将数学证明视为游戏,利用强化学习和变体生成技术。
  • 该模型在2024年国际数学奥林匹克中成功解决多道难题并获得金牌。
  • AlphaProof的核心思路是将数学证明过程转化为可反复训练的游戏。
  • 系统使用了一个30亿参数的编码器-解码器transformer模型作为核心。
  • 训练过程中,团队使用了3000亿个token的代码和数学文本进行预训练。
  • 通过自动形式化过程,生成了约8000万道形式化问题,远超现有数据集。
  • AlphaProof在比赛中成功解决了代数和数论的三道题,其中P6是最难的题目。
  • AlphaProof在处理新定义时面临挑战,尤其在定制化定义的情况下表现不佳。
  • 数学家们对AlphaProof的应用进行了测试,发现其在找反例方面表现出色。
➡️

继续阅读