强化学习中的概率推理正确实施
原文中文,约300字,阅读约需1分钟。发表于: 。强化学习中,通过马尔科夫决策过程的图形模型,以概率推理的方式对各状态 - 行为对的访问概率进行研究。本研究采用贝叶斯方法,严格处理了状态 - 行为优化的后验概率,并阐明了其在马尔科夫决策过程中的流动方式。通过引入变分贝叶斯近似方法,得到了一个可行的凸优化问题,建立的策略也能有效地进行探索。该方法称为 VAPOR,与汤普森抽样、K...
本研究介绍了一种名为VAPOR的深度强化学习方法,通过马尔科夫决策过程的图形模型,以概率推理的方式对状态-行为对的访问概率进行研究。该方法采用贝叶斯方法处理状态-行为优化的后验概率,并通过变分贝叶斯近似方法得到一个可行的凸优化问题。实验结果显示,VAPOR在性能上具有优势。