💡
原文英文,约300词,阅读约需1分钟。
📝
内容提要
本文介绍了机器学习中扩散模型和流匹配的基础数学知识,旨在以简单易懂的方式教授扩散。教程分为五部分,涵盖扩散基本概念、随机和确定性扩散采样器的构建、流匹配相关内容,以及与更广泛文献的联系,强调实际应用中的设计选择。
🎯
关键要点
- 本文介绍了机器学习中扩散模型和流匹配的基础数学知识。
- 教程旨在以简单易懂的方式教授扩散,要求的数学和机器学习基础知识较少。
- 核心思想不需要随机微分方程(SDE)、证据下界(ELBO)、朗之万动力学或评分的概念。
- 读者只需熟悉基本概率、微积分、线性代数和多元高斯分布。
- 教程分为五部分,每部分相对独立。
- 第一部分介绍扩散的基本概念和我们要解决的问题。
- 第二和第三部分分别展示如何构建随机和确定性扩散采样器,并直观推导这些采样器如何正确逆转前向扩散过程。
- 第四部分讨论流匹配,视为扩散的推广,提供额外的灵活性。
- 最后一部分将扩散与更广泛的文献联系起来,强调实际应用中的设计选择,包括采样器、噪声调度和参数化。
➡️