💡
原文英文,约1200词,阅读约需5分钟。
📝
内容提要
SMOTE是一种解决机器学习类别不平衡问题的数据增强技术,通过在少数类样本间插值生成合成样本,帮助平衡数据集。使用时需先划分训练和测试集,以防数据泄漏。常见误用包括过度平衡和忽视评估指标的上下文。
🎯
关键要点
- SMOTE是一种解决机器学习类别不平衡问题的数据增强技术。
- 类别不平衡是指标记数据集中某些类别的样本数量差异很大,导致模型偏向于多数类。
- SMOTE通过在少数类样本之间插值生成合成样本,帮助平衡数据集。
- 使用SMOTE时,需先划分训练集和测试集,以防数据泄漏。
- 常见的SMOTE误用包括:在划分数据集前应用SMOTE、过度平衡样本、忽视评估指标的上下文。
- 评估模型时应关注召回率、F1分数等指标,而不仅仅是整体准确率。
- 在实现SMOTE时,使用管道可以确保只对训练数据应用SMOTE,避免合成信息泄漏到测试集中。
➡️