生成器匹配:使用任意马尔可夫过程的生成建模

原文中文,约300字,阅读约需1分钟。发表于:

本研究解决了生成建模领域在多种马尔可夫过程应用中的不足,通过引入生成器匹配框架,统一了扩散模型、流匹配及离散扩散模型等多种方法。主要发现是,生成器匹配不仅扩展了马尔可夫过程的设计空间,还在蛋白质和图像结构生成中实验证明其优越性,特别是与跳跃过程的叠加显著改善了图像生成效果。

我们提出了一种新生成模型,通过建模数据点的状态和维度,处理不同维度的数据。该模型基于跳跃扩散过程,定义了前向噪声过程,并导出了时序反转生成过程。通过模拟,我们有效地联合生成状态和维度,展示了在分子和视频数据集上的优越性能。

相关推荐 去reddit讨论
  1. Meta 宣布推出 AI 驱动的视频生成器 Movie Gen
    Meta推出Movie Gen AI视频生成器,可通过文本生成高清视频并添加音效,还能编辑现有视频和图像。由于成本高和生成时间长,暂不公开发布。工具引发版...
  2. 模块化:Python程序员轻松入门Mojo🔥
    本文介绍了Mojo编程语言,从Python程序员的角度出发,通过一个简单的例子展示了Mojo的语法和性能优势。文章指出Mojo与Python语法相似,但在...
  3. Modular:我们筹集了1亿美元以改善全球开发者的AI基础设施
    Modular宣布获得1亿美元新融资,加速实现全球开发者AI基础设施愿景。他们的下一代AI开发者平台改善了AI的可编程性、可用性、可扩展性、计算效率和硬件...
  4. 模块化:Mojo🔥 如何实现比 Python 快 35,000 倍的加速 – 第二部分
    在本博客文章中,我们将继续优化Mandelbrot集合问题,并将速度提高到Python的26,000倍。我们将分享使用的技术,并讨论Mojo的优势。第三部...
  5. Modular:发布 MAX 开发者版预览
    Modular推出了Modular Accelerated Xecution (MAX)平台,旨在简化在不同硬件平台上部署AI模型。MAX包括先进的AI编...
  6. 模块化:Mojo🔥 - 它终于来了!
    自从5月2日推出Mojo编程语言以来,已有超过120,000名开发者注册使用Mojo Playground,19,000名开发者在Discord和GitH...
  7. 模块化:Mojo🔥如何实现比Python快35,000倍的速度提升——第一部分
    本文介绍了Mojo编程语言在Mandelbrot集合问题上的性能优化,通过类型注释、严格模式和简化计算等方法,实现了46倍至89倍的速度提升。与NumPy...
  8. 模块化:在Python🐍中使用Mojo🔥
    本文介绍了在Mojo中使用Python模块和包的方法,包括查找和加载模块和包、使用venv创建虚拟环境和使用Conda安装libpython。文章提供了示...
  9. 【Hadoop】【持续更新】hdfs 常见命令
    hdfs fsck命令是用于检查Hadoop分布式文件系统(HDFS)中的文件和目录的工具。它可以检测出文件和目录的损坏、丢失和副本问题,并提供修复建议。...
  10. 【Hadoop】Yarn 作业启动源码解读
    本文介绍了作业提交的流程和相关类的功能。作业提交的核心类是Job.java,其中的submit()函数实现了作业的提交。在作业提交过程中,主要包括连接Re...