💡
原文英文,约300词,阅读约需2分钟。
📝
内容提要
特斯拉从FPGA/GPU系统转向定制ASIC(如FSD芯片、Dojo D1),在激光雷达和视觉处理上采取不同于行业标准的策略。FPGA适合多传感器融合但功耗高,而特斯拉的ASIC在视觉处理上表现优越,但不支持激光雷达。FPGA具有较强适应性,而ASIC则需控制整个技术栈。
🎯
关键要点
- 特斯拉从FPGA/GPU系统转向定制ASIC(如FSD芯片、Dojo D1),代表了与行业标准的战略分歧。
- FPGA适合多传感器融合,但功耗高,且AI加速能力有限。
- 特斯拉的ASIC在视觉处理上表现优越,具有定制SRAM-on-chip,减少DRAM延迟,但不支持激光雷达。
- FPGA示例包括Luminar Iris和Continental ARS540,处理多种传感器数据。
- 特斯拉的ASIC示例包括FSD芯片和Dojo D1,具有高性能和带宽。
- FPGA更适合不断发展的标准,而ASIC则依赖于特斯拉的垂直整合和硬件-软件协同设计。
- 对于传感器无关的系统,FPGA更具优势;对于仅视觉处理的系统,特斯拉的ASIC在性能和功耗上无可匹敌。
- 未来可能出现混合解决方案,结合FPGA的可编程性与ASIC的效率。
- 选择ASIC的前提是控制整个技术栈、生产量足以抵消NRE成本,并愿意在架构上保持5年以上不变。
➡️