通过协方差矩阵的乔列斯基分解恢复具有潜变量的线性因果模型
原文中文,约400字,阅读约需1分钟。发表于: 。通过从观测数据中恢复有向无环图(DAG)结构来发现因果关系是一个众所周知的挑战性组合问题。本文首先提出了一种基于观测数据协方差矩阵的 Cholesky 分解的 DAG 结构恢复算法,该算法快速易实现且具有精确恢复的理论保证。在合成和真实数据集上,该算法比先前的方法明显更快,并达到了最先进的性能。此外,在等误差方差假设下,我们将优化过程纳入基于 Cholesky...
本文提出了一种基于观测数据协方差矩阵的 DAG 结构恢复算法,能够快速易实现且具有精确恢复的理论保证。在合成和真实数据集上,该算法比先前的方法明显更快,并达到了最先进的性能。同时,修改后的算法能够在大多数情况下恢复出真实图,并且优于现有算法。