💡
原文英文,约1000词,阅读约需4分钟。
📝
内容提要
本文探讨了通过优化查询预处理、检索策略和响应生成来提升帮助台聊天机器人的准确性。通过扩展用户查询、结合向量与关键词检索以及结构化GPT输入,显著改善了检索结果和响应质量,减少了错误回答。
🎯
关键要点
- 通过优化查询预处理、检索策略和响应生成来提升帮助台聊天机器人的准确性。
- 用户查询常常模糊、无结构或过短,需要进行清理和重构。
- 使用自然语言处理技术扩展用户查询,增加相关同义词。
- 结合向量检索和关键词过滤来提高检索精度。
- 为GPT提供结构化的上下文,以减少误解和模糊回答。
- 对长文档进行总结,以便GPT更好地理解关键信息。
- 优化后,检索结果更相关,GPT的回答更清晰简洁,减少了50%的错误回答。
➡️