💡
原文英文,约2200词,阅读约需8分钟。
📝
内容提要
本文介绍了如何构建一个基于检索增强生成(RAG)的AI聊天机器人,专门用于回答火星旅行政策的问题。通过使用Amazon S3存储旅行政策文档,聊天机器人能够从知识库中提取准确答案,而非依赖预训练数据。结合Amazon Lex和Bedrock,用户可以创建一个智能且上下文相关的聊天系统。
🎯
关键要点
- 聊天机器人在软件公司中被广泛采用,主要用于客户支持和信息提供。
- 本文介绍如何构建一个基于检索增强生成(RAG)的AI聊天机器人,专门回答火星旅行政策的问题。
- 聊天机器人从存储在Amazon S3中的旅行政策文档中提取答案,而不是依赖预训练数据。
- RAG通过从内容存储中直接检索答案,提高了生成答案的准确性。
- Amazon Bedrock是AWS的托管服务,提供基础模型,简化了AI应用的开发过程。
- 创建知识库需要在Amazon Bedrock中选择数据源类型为Amazon S3,并同步数据。
- 使用Amazon Lex创建聊天机器人,设置意图以响应用户请求。
- 通过添加Amazon QnAIntent,聊天机器人能够处理常见问题并从知识库中获取信息。
- 构建的聊天机器人能够提供准确的上下文相关答案,适用于客户支持、内部HR问题等场景。
- 建议删除不再使用的资源以避免AWS产生不必要的费用。
➡️