💡 原文中文,约6000字,阅读约需15分钟。
📝

内容提要

DeepSeek 发布了一种名为 NSA 的稀疏注意力机制,旨在提高长上下文的训练和推理效率。该机制通过硬件对齐和可训练设计,显著降低计算开销,同时保持性能。实验结果表明,NSA 在多个基准测试中表现优异,尤其在长上下文任务中展现出卓越的能力和加速效果。

🎯

关键要点

  • DeepSeek 发布了一种名为 NSA 的稀疏注意力机制,旨在提高长上下文的训练和推理效率。
  • NSA 通过硬件对齐和可训练设计,显著降低计算开销,同时保持性能。
  • 长上下文建模是大型语言模型的关键能力,普通注意力机制在长序列中存在高复杂性和延迟瓶颈。
  • NSA 通过选择性计算关键 query-key 对,利用 softmax 注意力的固有稀疏性,减少计算开销。
  • NSA 解决了硬件对齐的推理加速和训练感知的算法设计两个关键挑战。
  • NSA 采用分层 token 建模,通过时间块组织键和值,减少每查询计算量。
  • NSA 在多个基准测试中表现优异,尤其在长上下文任务中展现出卓越的能力和加速效果。
  • NSA 在解码、前向和后向阶段提供了明显的加速,且加速比随着序列长度的增加而增加。
  • NSA 的设计能够高效捕捉长距离逻辑依赖关系,支持复杂推理任务。
  • 在 64k 上下文长度下,NSA 实现了 9.0 倍的前向加速和 6.0 倍的反向加速,解码速度也显著提高。
➡️

继续阅读